STAT115 Sample Questions

- 1. When should a t-test be used instead of a z-test?
 - a) When the sample size is large.
 - b) When the population standard deviation is known.
 - c) If the population standard deviation is not known.
 - d) When comparing proportions.
 - e) When dealing with relative risk.

Information for questions 2 - 3.

For a hypothesis test comparing two population proportions with the following data:

Group	Successes	Sample Size
А	45	100
В	30	80

- 2. Calculate the pooled sample proportion.
 - a) 0.375
 - b) 0.45
 - c) 0.53
 - d) 0.42
 - e) 0.55
- 3. Using the data from the previous question, calculate the standard error for the difference in proportions.
 - a) 0.065
 - b) 0.024
 - c) 0.085
 - d) 0.095
 - e) 0.074

Information for questions 4 - 5.

R is an important component of STAT115 - answer the following questions relating to R...

- 4. What is the purpose of the pnorm function in R?
 - a) To calculate the density of the normal distribution.
 - b) To calculate the quantiles of the normal distribution.
 - c) To calculate the cumulative probability of the normal distribution.
 - d) To generate random numbers from the normal distribution
 - e) To calculate the limits of the normal distribution.

- 5. Which R command would you use to find the 95th percentile of a standard normal distribution?
 - a) pnorm(0.95)
 - b) qnorm(0.95)
 - c) pnorm(1.645)
 - d) qnorm(1.645)
 - e) pbinom(0.95)

Information for questions 6 - 7.

Given the observed counts for a drug trial:

	Improved	Not improved	Total
Drug	59	41	100
Placebo	37	63	100
Total	96	104	200

- 6. What is the expected count for the "Improved" category in the drug group under the null hypothesis?
 - a) 48
 - b) 50
 - c) 59
 - d) 96
 - e) 100
- 7. Calculate the chi-squared test statistic.
 - a) 8.34
 - b) 9.70
 - c) 10.24
 - d) 12.50
 - e) 15.20

© CramTutor 2